bst-adt

0.1.5 • Public • Published

Codeship Status npm version dependency status

Binary Search Tree

Description

Javascript implementation of a binary search tree data structure.

A binary search tree is a rooted binary tree and by definition each node can have at most two child nodes. A node consists of a key, or value, and a pointer to a left child node and a pointer a right child node. A node containing no children is called a leaf node.

The main distinction between a binary search tree and a binary tree is that a binary search tree is sorted. This implies the characteristic that the left child of each node will be less than its parent, while each right child will be greater than or equal to its parent.

The major advantage of binary search trees over other data structures is that the related sorting algorithms and search algorithms such as in order traversal can be very efficient.

This implementation of the binary search tree uses a custom comparator function to determine the relative ordering of nodes. This function can be provided to the constructor when instantiating a binary search tree object. A custom function comparator function is necessary when storing more complex objects. If no comparator function is provided, the binary search tree will utilize the default comparator function which will only work on primitive types. See the basic usage section for a specific example.

NOTE: There are NO tree re-balancing capabilities available yet in this implementation

Environment:

Although this implementation is designed to be used with Node.js, it could be used in other contexts with minor modifications. This implementation does not have any external dependencies that would preclude it from being used in the browser--just include it with a <script> tag and it should be good to go. Disclaimer: I have not tested this implementation in any other context/environment; only tested with node.js


Basic Usage (for primitive objects)

Install with npm :

npm install bst-adt --save
var BST = require('bst-adt');
 
// binary search tree of ints using default comparator
var bst = new BST();
bst.add(7);
bst.add(4);
bst.add(10);
bst.add(3);
bst.add(5);
bst.add(11);
bst.add(9);
 
console.log(bst.contains(10));
// --> true
 
bst.inOrderTraversal(function (key) {
    console.log(key);
});
// --> 3, 4, 5, 7, 9, 10, 11
 
bst.min();
// --> 3
 
bst.max();
// --> 11
 
bst.remove(9);
// --> true
 
bst.inOrderTraversal(function (key) {
    console.log(key);
});
// --> 3, 4, 5, 7, 10, 11
 
bst.preOrderTraversal(function (key) {
    console.log(key);
});
// --> 7, 4, 3, 5, 10, 11

Usage for more complex objects

When using this implementation to store more complex objects, a comparator function needs to be provided to the constructor when initializing the binary search tree.

Let's look at an example. Assume there is a 'person' object defined as:

function Person(opts) {
    this.name = opts.name || "no name";
    this.age = opts.age || null;
}

Assuming we would like to compare the person objects by age, we would define the comparator function as:

// comparator function for the person object
function cmp(a, b) {
    return a.age - b.age;
}

Given the above functions, usage of this binary search tree is very similar to the basic usage with the exception of providing the comparator function to the person constructor.

var BST = require('bst');
var bst = new BST(cmp);
 
bst.add( new Person({name: "Alice", age: 40}) );
bst.add( new Person({name: "Bob", age: 32}) );
bst.add( new Person({name: "Charlie", age: 50}) );
bst.add( new Person({name: "Dave", age: 25}) );
bst.add( new Person({name: "Eric", age: 45}) );
 
bst.inOrderTraversal(function (key) {
    console.log(key);
});
// --> { name: 'Dave', age: 25 }
// --> { name: 'Bob', age: 32 }
// --> { name: 'Alice', age: 40 }
// --> { name: 'Eric', age: 45 }
// --> { name: 'Charlie', age: 50 }
 
console.log(bst.min());
// --> { name: 'Dave', age: 25 }
 
console.log(bst.max());
// --> { name: 'Charlie', age: 50 }

API

Available methods for a binary search tree instance:

add(value)

Adds a node to the binary search tree containing 'value'

contains(value)

Determines if the binary search tree contains 'value'

inOrderTraversal(callback)

Traverses the binary search tree in order, meaning it will visit each node in the tree in the order defined by the comparator function. Typically this is done from smallest to largest value.

The callback function has a signature of function (key) {} where the key is value of each node traversed.

preOrderTraversal(callback)

Traverses the binary search tree pre-order, meaning a particular node is visited before any of its children.

postOrderTraversal(callback)

Traverses the binary search tree post-order, meaning a particlar node is visited after all of its children have been visited.

min()

Returns the minimum value contained in the binary search tree

max()

Returns the maximum value contained in the binary search tree

remove(key)

Removes the node with key from the binary search tree


License

MIT © Jason Jones

Package Sidebar

Install

npm i bst-adt

Weekly Downloads

1

Version

0.1.5

License

MIT

Last publish

Collaborators

  • jasonsjones